Duurzaam ondernemen door

een focus op

Life Cycle Costing (LCC)

Martin Bunnik

Presentator

- 20 jaar Fluor ervaring
- MBu Project Consultancy
- Leraar Cost Engineering (DACE/HAN)
 - Kwaliteitsmanagement
 - Value Management
 - Life Cycle Costing
 - Risicomanagement

Presentation

- 1. What is Life Cycle Costing?
- 2. Examples
- 3. Conclusions
- 4. Discussion:

Is goedkoop altijd duurkoop?

Life Cycle Costing (LCC)

What is Life Cycle Costing?

Major elements of Life Cycle Costing:

- Life Cycle Cost (LCC)
- Asset performance \rightarrow Compliance to:
 - Functional requirements
 - Performance requirements (RAMS)
 - Life time requirements

Asset Value = <u>Required Asset Performance</u> Lowest LCC

over a defined life time

Life Cycle Costing is a method to maximize Asset Value

What is Life Cycle Costing?

Life Cycle Costing:

To evaluate and/or optimize Life Cycle Cost (LCC) while satisfying specific Performance, Reliability, Availability, Maintainability & Safety (RAMS) and other requirements over a defined (operational) period.

The aim is to provide **input to decision making** in all phases of a project life cycle. especially in the development phases

Asset Performance Definitions and Formulas

Financial Definitions and Formulas

Typical Cash Flow model

Net Present Value (NPV)

Net Present Value (NPV) = \sum discounted in- and output cash flows $NPV = \sum_{n=0}^{n} \frac{Ct}{(1 + DR)^{n}}$ *t* = the time of the cash flow *Ct* = the net cash flow at time t. *DR* = the discount rate (decimals) *n* = the years of the project

FLUOR

Major LCC Cost Drivers:

Asset Performance RAMS

Non-Availabilty: Unplanned Asset Downtime

Major Asset performance criteria (Cost Drivers):

- R = Rialibility
- A = Availability
- M = Maintainability
- S = Safety

LCC Methodology Value Engineering

Diverge process: Transition from Functional Requirements into Design & Execution Options

FLUOR

Converge process

Example LCC : Redundant Pump

A critical pump is not spared and if the pump fails, the plant shuts down. The alternative is to spare the pump and automatically switch over when the running pump fails. Calculate if it is Life Cycle Cost effective to spare this pump.

<u>data:</u>	Installed Cost for one pump incl. automatic switch	€ 1.000.000
	Estimated plant availability increase	1%
	Maintenance Cost per year	5% of installed cost.
	Cost for down time	€ 100.000/stream day
	Plant stream days a year:	340
	Discount Rate	20%
	Max evaluation period	10 years operations

Example LCC : Redundant Pump

Benefits for less deferred production:

1% x 340 days x 100.000 = Additional maintenance cost = Yearly OPEX savings =

€ 340.000/year

- € <u>- 25.000/year</u>
- € 315.000/year (+ CF)
- Investment (CAPEX) = € 1.000.000 (- CF)

Example LCC : Redundant Pump

 LCC_{NPV} calculation

Years t	Cashflow C	PV	PV (cum)	
0	-1000	-1000	-1000	
1	315	262	-738	
2	315	219	-519	
3	315	183	-336	
4	315	152	-184	
5	315	126	-58	← ROI
6	315	105	48	≈ 5.5 years
7	315	87	135	
8	315	73	208	
9	315	61	269	
10	315	51	320	

Cost x € 1000

Discount Rate @ 20%

Conclusions

Ja, door een LCC benadering verbeter je het duurzaam ondernemen

- Verbeterde Asset performance
- Lagere LCC
- Verbeterde concurrentie positie
 - Verbeterde verkoop
 - Potentieel meer winst

- Insufficient awareness benefits by management:
 - Short term focus
 - CAPEX focus
- Lack of broad focus (over development + life time)
- Schedule pressure
- Insufficient integrated knowledge & experience:
 - Technical + Value Engineering + Financial + RAMS

Is goedkoop altijd duurkoop? (Goedkoop = CAPEX)

